

© Eric Xing @ CMU, 2006-2012 1

Clustering and partially observable probabilistic models

Unobserved Variables

- A variable can be unobserved (latent) because:
	- \bullet it is an imaginary quantity meant to provide some simplified and abstractive view of the data generation process
		- ze.g., speech recognition models, mixture models …
	- \bullet it is a real-world object and/or phenomena, but difficult or impossible to measure
		- ze.g., the temperature of a star, causes of a disease, evolutionary ancestors …
	- \bullet it is a real-world object and/or phenomena, but sometimes wasn't measured, because of faulty sensors; or was measure with a noisy channel, etc.
		- ze.g., traffic radio, aircraft signal on a radar screen,
- Discrete latent variables can be used to partition/cluster data into sub-groups (mixture models, forthcoming).
- Continuous latent variables (factors) can be used for dimensionality reduction (factor analysis, etc., later lectures).

Mixture Models

- $\bullet\;$ A density model $p(\mathsf{x})$ may be multi-modal.
- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).
- Each mode may correspond to a different sub-population (e.g., male and female).

 (b)

Gaussian Mixture Models (GMMs)

 \bullet Consider a mixture of *K* Gaussian com ponents:

$$
p(x_n | \mu, \Sigma) = \sum_{k} \pi_k N(x, | \mu_k, \Sigma_k)
$$

- This model can be used for unsupervised clustering.
	- \bullet This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

GGM derivations

- Consider a mixture of *K* Gaussian components:
	- \bullet Z is a latent class indicator vector:

$$
p(z_n) = \text{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}
$$

z $\mathcal X$ is a conditional Gaussian variable with a class-specific mean/covariance

$$
p(\mathbf{x}_n \mid \mathbf{z}_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}_n - \mu_k)^T \Sigma_k^{-1}(\mathbf{x}_n - \mu_k)\right\}
$$

 \bullet The likelihood of a sample:

> $\Big($) $\Sigma) = \sum$ $\frac{1}{\kappa}$ $\displaystyle{\mathop{p}(z^{\kappa}=1|\,\pi)}$ $\displaystyle{\mathop{p(x,|z^{\kappa}=1,\mu,\Sigma}}$ $p(x_n|\mu, \Sigma) = \sum_k p(z^k = 1 | \pi) p(x, |z^k = 1, \mu, \Sigma)$ mixture proportion $=\sum_{z_n}\prod_k\left((\pi_k)^{z_n^k}\mathcal{N}(x_n:\mu_k,\Sigma_k)^{z_n^k}\right)=\sum_k^{\vee}\pi_k\mathcal{N}(x,|\mu_k,\Sigma_k)$ ζ_n : μ_k , Σ_k)^z $\prod_k \left((\pi_k)^{z_n^*} \mathcal{N}(x_n : \mu_k, \Sigma_k)^{z_n^*} \right) = \sum_k \pi_k \mathcal{N}(x)$ k n $(\pi_k)^{z_n^k} \mathcal{N}(x_n : \mu_k, \Sigma_k)^{z_n^k} = \sum_k \pi_k \mathcal{N}(x, \vert \mu_k, \Sigma_k)$

mixture component

Z

X

Learning mixture models

Why is Learning Harder?

 \bullet • In fully observed iid settings, the log likelihood decomposes into a sum of local terms.

$$
\ell_c(\theta; D) = \log p(x, z | \theta) = \log p(z | \theta_z) + \log p(x | z, \theta_x)
$$

• With latent variables, all the parameters become coupled together via *marginalization*

Gradient Learning for mixture models

• We can learn mixture densities using gradient descent on the log likelihood. The gradients are quite interesting:

$$
\ell(\theta) = \log p(\mathbf{x} | \theta) = \log \sum_{k} \pi_{k} p_{k}(\mathbf{x} | \theta_{k})
$$

$$
\frac{\partial \ell}{\partial \theta} = \frac{1}{p(\mathbf{x} | \theta)} \sum_{k} \pi_{k} \frac{\partial p_{k}(\mathbf{x} | \theta_{k})}{\partial \theta}
$$

$$
= \sum_{k} \frac{\pi_{k}}{p(\mathbf{x} | \theta)} p_{k}(\mathbf{x} | \theta_{k}) \frac{\partial \log p_{k}(\mathbf{x} | \theta_{k})}{\partial \theta}
$$

$$
= \sum_{k} \pi_{k} \frac{p_{k}(\mathbf{x} | \theta_{k})}{p(\mathbf{x} | \theta)} \frac{\partial \log p_{k}(\mathbf{x} | \theta_{k})}{\partial \theta_{k}} = \sum_{k} r_{k} \frac{\partial \ell_{k}}{\partial \theta_{k}}
$$

- In other words, the gradient is the responsibility weighted sum of the individual log likelihood gradients.
- Can pass this to a conjugate gradient routine.

k

Parameter Constraints

- Often we have constraints on the parameters, e.g. $\Sigma_k \pi_k = 1$, Σ being symmetric positive definite (hence $\Sigma_{\it ii}$ > 0).
- We can use constrained optimization, or we can reparameterize in terms of unconstrained values.
	- zFor normalized weights, use the softmax transform:
	- zFor covariance matrices, use the Cholesky decomposition:

$$
\Sigma^{-1} = \mathbf{A}^T \mathbf{A}
$$

where A is upper diagonal with positive diagonal:

$$
\mathbf{A}_{ij} = \exp(\lambda_i) > \mathbf{0} \quad \mathbf{A}_{ij} = \eta_{ij} \quad (j > i) \quad \mathbf{A}_{ij} = \mathbf{0} \quad (j < i)
$$

the parameters $\gamma_{\dot{r}}$ $\lambda_{\dot{r}}$ $\eta_{\dot{i}\dot{j}}$ \in ${\mathbb R}$ are unconstrained.

z Use chain rule to compute $\hat{}$. $\partial \mathbf{A}$. **A**∂ ∂**l l** ∂π

The Expectation-Maximization (EM) Algorithm

EM algorithm for GMM

- z E. g., A mixture of K Gaussians:
	- \bullet *Z* is a latent class indicator vector

$$
p(z_n) = \text{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}
$$

 \bullet X is a conditional Gaussian variable with a class-specific mean/covariance

$$
p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2} (x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k)\right\}
$$

 \bullet The likelihood of a sample:

$$
p(x_n | \mu, \Sigma) = \sum_{k} p(z^k = 1 | \pi) p(x, | z^k = 1, \mu, \Sigma)
$$

=
$$
\sum_{z_n} \prod_{k} \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_{k} \pi_k N(x, | \mu_k, \Sigma_k)
$$

EM algorithm for GMM

- \bullet **s** Recall MLE for completely observed data \sqrt{z}
- \bullet **Data log-likelihood**

$$
\ell(\theta; D) = \log \prod_{n} p(z_n, x_n) = \log \prod_{n} p(z_n | \pi) p(x_n | z_n, \mu, \sigma)
$$

=
$$
\sum_{n} \log \prod_{k} \pi_k^{z_n^k} + \sum_{n} \log \prod_{k} N(x_n; \mu_k, \sigma)^{z_n^k}
$$

=
$$
\sum_{n} \sum_{k} z_n^k \log \pi_k - \sum_{n} \sum_{k} z_n^k \frac{1}{2\sigma^2} (x_n - \mu_k)^2 + C
$$

• **MLE**
$$
\hat{\pi}_{k,MLE} = \arg \max_{\pi} \ell(\theta; D),
$$

\n $\hat{\mu}_{k,MLE} = \arg \max_{\mu} \ell(\theta; D)$ $\Rightarrow \hat{\mu}_{k,MLE} = \frac{\sum_{n} z_n^k x}{\sum_{n} z_n^k}$
\n $\hat{\sigma}_{k,MLE} = \arg \max_{\sigma} \ell(\theta; D)$

• What if we do not know z_n ?

$$
z_n \to p(z_n^k = 1 | x, \mu^{(t)}, \Sigma^{(t)})
$$

k

n

EM algorithm for GMM

- Start:
	- "Guess" the centroid μ_k and coveriance \mathcal{Z}_k of each of the K clusters
- \bullet Loop

Comparing to K K-means

- Start:
	- \bullet \bullet "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop
	- \bullet For each point $n=1$ to N,

compute its cluster label:

$$
z_n^{(t)} = \arg \max_{k} (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})
$$

 \bullet For each cluster k=1:K

Notes on EM Algorithm

- \bullet EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- It is much simpler than gradient methods:
	- zNo need to choose step size.
	- \bullet Enforces constraints automatically.
	- zCalls inference and fully observed learning as subroutines.
- \bullet EM is an Iterative algorithm with two linked steps:
	- zE-step: fill-in hidden values using inference, $p(z|x, \theta)$.
	- z M-step: update parameters t+1 using standard MLE/MAP method applied to completed data
- We will prove that this procedure monotonically improves (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Identifiability

- \bullet A mixture model induces a multi-modal likelihood.
- \bullet Hence gradient ascent can only find a local maximum.
- \bullet Mixture models are unidentifiable, since we can always switch the hidden labels without affecting the likelihood.
- Hence we should be careful in trying to interpret the "meaning" of latent variables.

How is EM derived?

- A mixture of K Gaussians:
	- \bullet Z is a latent class indicator vector

$$
\boldsymbol{p}(\boldsymbol{z}_n) = \text{multi}(\boldsymbol{z}_n : \boldsymbol{\pi}) = \prod (\pi_k)^{z_n^k}
$$

 X is a conditional Gaussian variable with a class-specific mean/covariance k \bullet s a conditional Gaussian variable with a class-specific

$$
p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2} (x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k)\right\}
$$

 \bullet The likelihood of ^a sample:

$$
p(x_n|\mu, \Sigma) = \sum_{k} p(z_n^k = 1 | \pi) p(x, | z_n^k = 1, \mu, \Sigma)
$$

=
$$
\sum_{z_n} \prod_{k} \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_{k} \pi_k N(x, | \mu_k, \Sigma_k)
$$

• The "complete" likelihood

$$
p(x_n, z_n^k = 1 | \mu, \Sigma) = p(z_n^k = 1 | \pi) p(x, | z_n^k = 1, \mu, \Sigma) = \pi_k N(x, | \mu_k, \Sigma_k)
$$

$$
p(x_n, z_n | \mu, \Sigma) = \prod_k [\pi_k N(x, | \mu_k, \Sigma_k)]^{z_n^k}
$$

But this is itself a random variable! Not good as objective function

How is EM derived?

• The complete log likelihood:

$$
\ell(\theta; D) = \log \prod_{n} p(z_n, x_n) = \log \prod_{n} p(z_n | \pi) p(x_n | z_n, \mu, \sigma)
$$

=
$$
\sum_{n} \log \prod_{k} \pi_k^{z_n^k} + \sum_{n} \log \prod_{k} N(x_n; \mu_k, \sigma)^{z_n^k}
$$

=
$$
\sum_{n} \sum_{k} z_n^k \log \pi_k - \sum_{n} \sum_{k} \sum_{k} \frac{1}{2\sigma^2} (x_n - \mu_k)^2 + C
$$

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}
$$

• The expected complete log likelihood

$$
\langle \ell_c(\theta; \mathbf{x}, \mathbf{z}) \rangle = \sum_n \langle \log p(\mathbf{z}_n | \pi) \rangle_{p(\mathbf{z} | \mathbf{x})} + \sum_n \langle \log p(\mathbf{x}_n | \mathbf{z}_n, \mu, \Sigma) \rangle_{p(\mathbf{z} | \mathbf{x})}
$$

=
$$
\sum_n \sum_k \langle \mathbf{z}_n^k \rangle \log \pi_k - \frac{1}{2} \sum_n \sum_k \langle \mathbf{z}_n^k \rangle \big((\mathbf{x}_n - \mu_k)^T \Sigma_k^{-1} (\mathbf{x}_n - \mu_k) + \log |\Sigma_k| + C \big)
$$

current est. of the parameters (i.e., π and μ).

$$
\tau_n^{k(t)} = \left\langle z_n^k \right\rangle_{q^{(t)}} = p(z_n^k = 1 | x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} N(x_n, \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_{i} \pi_i^{(t)} N(x_n, \mu_i^{(t)}, \Sigma_i^{(t)})}
$$

O Here we are essentially doing **inference** i

E step E-step

z We maximize iterativel (**θ**) y using the following cl yg g c **Zn**iterative procedure:

Expectation step: computing the expected value of the

sufficient statistics of the hidden variables (i.e., z) given

M step M-step

- z We maximize iterativel (**θ**) y using the following cl yg g c **Zn**iterative procudure:
	- ─ Maximization step: compute the parameters under current results of the expected value of the hidden variables X_n

 $\arg \max \langle \langle \mathcal{L}(\mathbf{\theta}) \rangle, \quad \Rightarrow \frac{\partial}{\partial \pi_k} \langle \mathcal{L}(\mathbf{\theta}) \rangle = \mathbf{0}, \forall \mathcal{K}, \quad \text{s.t.}$ $\Rightarrow \pi^*_k = \frac{\sum_{n} \langle z_n^k \rangle_{q^{(t)}}}{N} = \frac{\sum_{n} \tau_n^{k(t)}}{N} = \langle n_k \rangle_{N}$ k $\pi^*_k = \arg \max \langle \ell_c(\theta) \rangle, \qquad \Rightarrow \frac{\partial}{\partial \pi_k} \langle \ell_c(\theta) \rangle = 0, \forall k, \text{ s.t. } \sum \pi_k = 1$ ∑ ∑ $\left(\bm{\tau} \right)$ $\left(\bm{\tau} \right)$ $\mu_k^* = \arg \max \langle \mathcal{N}(\theta) \rangle, \quad \Rightarrow \mu_k^{(t+1)} = \frac{-\frac{\epsilon}{n} \eta}{\sum_{k} k(t)}$ n $n \binom{n}{n}$ $k(t)$ $u_k^* = \arg \max \langle \mathcal{N}(\mathbf{\theta}) \rangle, \quad \Rightarrow \mu_k^{(t+1)} = \frac{\sum_{k=1}^{n} u_k}{\sum_{k=1}^{n}}$ $\langle I(\theta) \rangle$ \Rightarrow $\mu_{\nu}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{(t)} \mathcal{X}_{n}}{\sum_{n} \tau_{n}^{(t)}}$ τ $\mu_k^* = \arg \max \langle I(\mathbf{\theta}) \rangle, \quad \Rightarrow \mu_k^{(t+1)} = \frac{\sum_n T_n^{(t)} \mathcal{X}_n}{\sum_{k \neq k}}$ Fact:

n \mathbf{u}

$$
\Sigma_{k}^{*} = \arg \max \langle I(\mathbf{\theta}) \rangle, \qquad \Rightarrow \Sigma_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} (\mathbf{X}_{n} - \mu_{k}^{(t+1)}) (\mathbf{X}_{n} - \mu_{k}^{(t+1)})^{T}}{\sum_{n} \tau_{n}^{k(t)}} \qquad \qquad \frac{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\partial \mathbf{A}} = \mathbf{x} \mathbf{x}^{T}
$$

O • This is isomorphic to **MLE** except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their corresponding "**sufficient statistics**")

© Eric Xing @ CMU, 2006-2012 21

 $\frac{1}{\sqrt{2}}$ = A^T

 $\frac{1}{-}$ = A

∂

 $log A$

Z

N

Compare: K K-means

- \bullet The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.
- In the K-means "E-step" we do hard assignment:

$$
Z_n^{(t)} = \arg \max_{k} (X_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (X_n - \mu_k^{(t)})
$$

• In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:

$$
\mu_{k}^{(t+1)} = \frac{\sum_{n} \delta(z_n^{(t)}, k) x_n}{\sum_{n} \delta(z_n^{(t)}, k)}
$$

Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe z, so computing

$$
\ell_c(\theta; D) = \log \sum_{z} p(x, z | \theta) = \log \sum_{z} p(z | \theta_z) p(x | z, \theta_x)
$$

is difficult!

• What shall we do?

Complete & Incomplete Log Likelihoods

- Complete log likelihood
	- Let X denote the observable variable(s), and Z denote the latent variable(s).
	- If Z could be observed, then

$$
\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z} | \theta)
$$

 \overline{d}

- \bullet • Usually, optimizing ℓ_c () given both z and x is straightforward (c.f. MLE for fully observed models).
- \bullet • Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor can be estimated separately.
- z**•** But given that \boldsymbol{Z} is not observed, ℓ_c () is a random quantity, cannot be **maximized directly**.
- Incomplete log likelihood

With *z* unobserved, our objective becomes the log of a marginal probability:

$$
\ell_c(\theta; \mathbf{x}) = \log p(\mathbf{x} | \theta) = \log \sum_{z} p(\mathbf{x}, z | \theta)
$$

z**This objective won't decouple**

Expected Complete Log Likelihood

• For any distribution $q(z)$, define expected complete log likelihood:

$$
\langle \ell_c(\theta; x, z) \rangle_q = \sum_{z} q(z | x, \theta) \log p(x, z | \theta)
$$

- A deterministic function of θ \bullet
- \bullet • Linear in ℓ_c $\left(\right)$ --- inherit its factorizabiility
- O Does maximizing this surrogate yield a maximizer of the likelihood?
- \bullet • Jensen's inequality

$$
\ell(\theta; x) = \log p(x | \theta)
$$

= $\log \sum_{z} p(x, z | \theta)$
= $\log \sum_{z} q(z | x) \frac{p(x, z | \theta)}{q(z | x)}$

$$
\geq \sum_{z} q(z | x) \log \frac{p(x, z | \theta)}{q(z | x)} \implies \ell(\theta; x) \geq \langle \ell_c(\theta; x, z) \rangle_q + H_q
$$

Lower Bounds and Free Energy

$$
F(q,\theta) = \sum_{z} q(z|x) \log \frac{p(x,z|\theta)}{q(z|x)} \leq \ell(\theta;x)
$$

- The EM algorithm is coordinate-ascent on $\mathcal F$:
	- \bullet **E-step:**

$$
q^{t+1} = \arg\max_{q} F(q, \theta^t)
$$

 \bullet

$$
\mathbf{M\text{-step:}} \qquad \theta^{t+1} = \arg \max_{\theta} \mathbf{F}(\mathbf{q}^{t+1}, \theta^t)
$$

E-step: maximization of expected $\ell_{\rm c}$ **w.r.t. q**

 \bullet Claim:

 ζ

$$
q^{t+1} = \arg\max_{q} F(q, \theta^t) = p(z | x, \theta^t)
$$

- \bullet This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting attains the bound $\mathcal{A}\theta,\mathsf{x}$) \geq $\mathcal{F}(q,\theta)$

$$
F(p(z|x, \theta^t), \theta^t) = \sum_{z} p(z|x, \theta^t) \log \frac{p(x, z | \theta^t)}{p(z|x, \theta^t)}
$$

$$
= \sum_{z} p(z|x, \theta^t) \log p(x | \theta^t)
$$

$$
= \log p(x | \theta^t) = \ell(\theta^t; x)
$$

• Can also show this result using variational calculus or the fact that $\ell(\theta; x) - F(a, \theta) = KL(a|| p(z | x, \theta))$ **l** $\ell(\theta; x) - \mathcal{F}(q, \theta) = \text{KL}(q || p(z | x, \theta))$

E-step [≡] **plug in posterior expectation of latent variables**

• Without loss of generality: assume that $p(x,z|\theta)$ is a generalized exponential family distribution:

$$
p(x, z | \theta) = \frac{1}{Z(\theta)} h(x, z) \exp \left\{ \sum_{i} \theta_{i} f_{i}(x, z) \right\}
$$

zSpecial cases: if $p(X|Z)$ are GLIMs, then

$$
f_i(x, z) = \eta_i^T(z) \xi_i(x)
$$

• The expected complete log likelihood under $q^{t+1} = p(z | x, \theta^t)$ is

$$
\left\langle \ell_c(\theta^t; \mathbf{x}, \mathbf{z}) \right\rangle_{q^{t+1}} = \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}, \theta^t) \log p(\mathbf{x}, \mathbf{z} | \theta^t) - A(\theta)
$$

$$
= \sum_{i} \theta_i^t \left\langle f_i(\mathbf{x}, \mathbf{z}) \right\rangle_{q(\mathbf{z} | \mathbf{x}, \theta^t)} - A(\theta)
$$

$$
= \sum_{i} \theta_i^t \left\langle \eta_i(\mathbf{z}) \right\rangle_{q(\mathbf{z} | \mathbf{x}, \theta^t)} \xi_i(\mathbf{x}) - A(\theta)
$$

© Eric Xing @ CMU, 2006-2012 28

M-step: maximization of expected $\ell_{\rm c}$ **w.r.t.** θ

• Note that the free energy breaks into two terms:

$$
F(q, \theta) = \sum_{z} q(z | x) \log \frac{p(x, z | \theta)}{q(z | x)}
$$

=
$$
\sum_{z} q(z | x) \log p(x, z | \theta) - \sum_{z} q(z | x) \log q(z | x)
$$

=
$$
\langle \ell_c(\theta; x, z) \rangle_q + H_q
$$

- \bullet • The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ , is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$
\theta^{t+1} = \arg \max_{\theta} \langle \ell_c(\theta; \mathbf{x}, \mathbf{z}) \rangle_{q^{t+1}} = \arg \max_{\theta} \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} | \theta)
$$

 \bullet • Under optimal q^{t+1} , this is equivalent to solving a standard MLE of fully observed Under optimal $\bm{\mathcal{q}}^{t\text{-}1}$, this is equivalent to solving a standard MLE of fully observed
model $\bm{\mathit{p}}(\bm{\mathit{x}},\bm{\mathit{z}}|\,\theta)$, with the sufficient statistics involving $\bm{\mathit{z}}$ replaced by their expectations w.r.t. $\rho\!\left(z| \!\right| \!\! x \! , \theta \!)$.

Summary: EM Algorithm

- \bullet • A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
	- 1. Estimate some "missin g" or "unobserved" data from observed data and current parameters.
	- 2.Using this "complete" data, find the maximum likelihood parameter estimates.
- \bullet • Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
	- t $t+1$ $\qquad \qquad \blacksquare$ z E-step: arg max $(\bm{\mathcal{q}}, \theta')$ \boldsymbol{q} =F $\mathcal G$ θ+
	- zM-step:

$$
q^{t+1} = \arg\max_{q} \mathcal{F}(q, \theta^t)
$$

$$
\theta^{t+1} = \arg\max_{q} \mathcal{F}(q^{t+1}, \theta^t)
$$

θ

• In the M-step we optimize a lower bound on the likelihood. In \bullet the E-step we close the gap, making bound=likelihood.

EM Variants

• Sparse EM:

Do not re-compute exactly the posterior probability on each data point under all models, because it is almost zero. Instead keep an "active list" which you update every once in a while.

• Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even given the completed data. We can still make progress by doing an M-step that improves the likelihood a bit (e.g. gradient step). Recall the IRLS step in the mixture of experts model.

A Report Card for EM

• Some good things about EM:

- \bullet no learning rate (step-size) parameter
- \bullet automatically enforces parameter constraints
- \bullet very fast for low dimensions
- \bullet each iteration guaranteed to improve likelihood

• Some bad things about EM:

- \bullet can get stuck in local minima
- \bullet can be slower than conjugate gradient (especially near convergence)
- \bullet \bullet requires expensive inference step
- \bullet is a maximum likelihood/MAP method

From static to dynamic mixture models

Static mixture

Dynamic mixture

© Eric Xing @ CMU, 2006-2012 33

Hidden Markov Models

The underlying source:

genomic entities, dice,

CGH signal, sequence of rolls,

Markov property:

This problem in IMPORTANT!!! - \bullet

An experience in ^a casino casino

Game:

- **1.You bet \$1 You**
- **2. You roll (always with a fair die)**
- **3. Casino player rolls (maybe with fair die, maybe with loaded die)**
- **4. Highest number wins \$2**

Question:

1245526462146146136136661664661636616366163616515615115146123562344

Which die is being used in each play?

A more serious question … \mathcal{L}

- \bullet • Naturally, data points arrive one at a time
	- \bullet Does the ordering index carry (additional) clustering information besides the data value itself ?
	- \bullet Example:

Chromosomes of tumor cell:

Copy number measurements (known as CGH)

© Eric Xing @ CMU, 2006-2012 36

Array CGH (comparative genomic hybridization)

- O The basic assumption of a CGH experiment is that the ratio of the binding of test and control DNA is proportional to the ratio of the copy numbers of sequences in the two samples.
- But various kinds of noises make the true observations less easy to interpret …

Nature Reviews | Genetics

DNA Copy number aberration types in breast cancer

60-70 fold amplification of CMYC region

Copy number profile for chromosome 1 from 600 MPE cell line

Copy number profile for chromosome 8 from COLO320 cell line

The Dishonest Casino !!!

Suppose you were told about the

following story before heading to Vegas...

A casino has two dice:

z **Fair die**

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6

 \bullet Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10 P(6) = 1/2

Casino player switches back - & -forth between fair and loaded die once every 20 turns

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- O How likely is this sequence, given our model of how the casino works?
	- zThis is the **EVALUATION** problem
- \bullet What portion of the sequence was generated with the fair die, and what portion with the loaded die?
	- \bullet This is the **DECODING** question
- O How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
	- zThis is the **LEARNING** question

Definition (of HMM)

O Observation space

> **Alphabetic set: Euclidean space:**

- O Index set of hidden states $\mathbb{R}^{\,d}$
	- $\mathbb{I} = \{1,2,\cdots,M\}$
- O Transition probabilities between any two states

$$
p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},
$$

or $p(y_t | y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2},..., a_{i,M}), \forall i \in \mathbb{I}.$

 $C = \{c_1, c_2, \cdots, c_k\}$

*x***A***1*

 \mathbb{I} .

y1

O Start probabilities

> $p(\mathcal{Y}_1)$ ~ π_1) ~ Multinomial $(\pi_1, \pi_2, ..., \pi_M)$.

O Emission probabilities associated with each state

$$
p(\mathbf{x}_t | \mathbf{y}_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,k}), \forall i \in \mathbb{I}.
$$

general:

i l or in general:

$$
p(\mathbf{x}_t | \mathbf{y}_t^i = 1) \sim f(\cdot | \theta_i), \forall i \in \mathbb{I}.
$$

State automata

...

Graphical model

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM **M**, and a sequence **x**, FIND Prob (**x** | **M**) ALGO.Forward

2. Decoding

3. Learning

Learning HMM: two scenarios

- **Supervised learning**: estimation when the "right answer" is known
	- z **Examples:**
		- GIVEN:a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
		- GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls
- **<u>Unsupervised learning</u>: estimation when the "right answer" is** unknown
	- \bullet **Examples:**
		- GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition
		- GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice
- \bullet **QUESTION:** Update the parameters θ of the model to maximize $P(X|\theta)$ --- Maximal likelihood (ML) estimation \degree Eric Xing \degree CMU, 2006-2012

Supervised ML estimation ctd estimation, .

z **Intuition:**

 \bullet • When we know the underlying states, the best estimate of θ is the average frequency of transitions & emissions that occur in the training data

• Drawback:

- \bullet Given little data, there may be **overfitting**:
	- $P(x|\theta)$ is maximized, but θ is unreasonable

0 probabilities – VERY BAD

<u>• Example:</u>

z• Given 10 casino rolls, we observe

> **x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 y = F, F, F, F, F, F, F, F, F, F**

 \bullet Then: a_{FF} = 1; a_{FL} = 0 $b_{F1} = b_{F3} = .2;$ $b_{F2} = .3$; $b_{F4} = 0$; $b_{F5} = b_{F6} = .1$

Pseudocounts

• Solution for small training sets:

- \bullet Add pseudocounts
	- A_{ij} = # times state transition $i \rightarrow j$ occurs in $y + R_{ij}$
	- B_{ik} = # times state *i* in **y** emits *k* in \mathbf{x} + S_{ik}
- \bullet \quad R_{ij} , \mathcal{S}_{ij} are pseudocounts representing our prior belief
- **•** Total pseudocounts: $R_i = \sum_j R_{ij}$, $S_i = \sum_k S_{ik}$,
	- --- "strength" of prior belief,
	- --- total number of imaginary instances in the prior
- Larger total pseudocounts \Rightarrow strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --smoothing

Unsupervised ML estimation

 \bullet • Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is unknown,

z**EXPECTATION MAXIMIZATION**

- $\overline{0}$. Starting with our best guess of a model M, parameters θ .
- 1. Estimate $\bm{\mathcal{A}}_{ij}$, $\bm{\mathcal{B}}_{i\bm{k}}$ in the training data
	- How? $A_{ij} = \sum_{n,t} \langle y'_{n,t-1} y'_{n,t} \rangle$ $B_{ik} = \sum_{n,t} \langle y'_{n,t} \rangle x'_{n,t}$, $\mathcal{B}_{i\mathcal{K}}=\sum_{n,t}\left\langle \mathcal{Y}_{n,t-1}^{i}\mathcal{Y}_{n,t}^{j}\right\rangle \hspace{0.5cm} \mathcal{B}_{i\mathcal{K}}=\sum_{n,t}\left\langle \mathcal{Y}_{n,t}^{i}\right\rangle \!\mathcal{X}_{n,t}^{k}$ j n, t $\mathcal{A}_{ij} = \sum_{n,t} \left\langle \mathcal{Y}_{n,t-1}^{i} \mathcal{Y}_{n,t}^{j} \right\rangle$
	- Update θ according to A_{ij} , B_{ik}
	- Now a "supervised learning" problem
- 2.Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

The Baum Welch algorithm

• The complete log likelihood

$$
\ell_c(\theta; x, y) = \log p(x, y) = \log \prod_n \left(p(y_{n,1}) \prod_{t=2}^T p(y_{n,t} | y_{n,t-1}) \prod_{t=1}^T p(x_{n,t} | x_{n,t}) \right)
$$

• The expected complete log likelihood

$$
\langle \ell_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) \rangle = \sum_n \left(\langle \mathbf{y}_{n,1}^i \rangle_{p(\mathbf{y}_{n,1}|\mathbf{x}_n)} \log \pi_i \right) + \sum_n \sum_{t=2}^T \left(\langle \mathbf{y}_{n,t-1}^i \mathbf{y}_{n,t}^j \rangle_{p(\mathbf{y}_{n,t-1}, \mathbf{y}_{n,t}|\mathbf{x}_n)} \log \mathbf{a}_{i,j} \right) + \sum_n \sum_{t=1}^T \left(\mathbf{x}_{n,t}^k \langle \mathbf{y}_{n,t}^i \rangle_{p(\mathbf{y}_{n,t}|\mathbf{x}_n)} \log \mathbf{b}_{i,k} \right)
$$

EM \bullet

> zThe **E** step

$$
\gamma_{n,t}^{i} = \langle \mathbf{y}_{n,t}^{i} \rangle = p(\mathbf{y}_{n,t}^{i} = 1 | \mathbf{x}_{n})
$$

$$
\xi_{n,t}^{i,j} = \langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \rangle = p(\mathbf{y}_{n,t-1}^{i} = 1, \mathbf{y}_{n,t}^{j} = 1 | \mathbf{x}_{n})
$$

 \bullet The **M** step ("symbolically" identical to MLE)

$$
\pi_i^{ML} = \frac{\sum_n \gamma_{n,1}^i}{N} \qquad \qquad a_{ij}^{ML} = \frac{\sum_n \sum_{t=2}^T \xi_{n,t}^{i,j}}{\sum_n \sum_{t=1}^T \gamma_{n,t}^i}
$$

© Eric Xing @ CMU, 2006-2012 47

The Baum-Welch algorithm - comments

Time Complexity:

iterations \times O(K²N)

- Guaranteed to increase the log likelihood of the model
- \bullet Not guaranteed to find globally best parameters
- \bullet • Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overt-fitting