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Clustering and partially
observable probabilistic modelsobservable probabilistic models
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Unobserved VariablesUnobserved Variables
z A variable can be unobserved (latent) because:( )

z it is an imaginary quantity meant to provide some simplified and abstractive view 
of the data generation process
z e.g., speech recognition models, mixture models …

z it is a real-world object and/or phenomena, but difficult or impossible to measure
z e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

z it is a real-world object and/or phenomena, but sometimes wasn’t measured, 
because of faulty sensors; or was measure with a noisy channel, etc.because of faulty sensors; or was measure with a noisy channel, etc.
z e.g., traffic radio, aircraft signal on a radar screen, 

z Discrete latent variables can be used to partition/cluster data 
into sub-groups (mixture models, forthcoming).

z Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture ModelsMixture Models
z A density model p(x) may be multi-modal.y p( ) y
z We may be able to model it as a mixture of uni-modal 

distributions (e.g., Gaussians).
E h d d t diff t b l tiz Each mode may correspond to a different sub-population 
(e.g., male and female).

⇒⇒
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Gaussian Mixture Models (GMMs)Gaussian Mixture Models (GMMs)
z Consider a mixture of K Gaussian components:p

∑ Σ=Σ
k kkkn xNxp ),|,(),( µπµ

mixture proportion mixture component

z This model can be used for unsupervised clustering.p g
z This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.
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GGM derivationsGGM derivations
z Consider a mixture of K Gaussian components: Zp

z Z is a latent class indicator vector:
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z X is a conditional Gaussian variable with a class-specific mean/covariance
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Learning mixture modelsLearning mixture models
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Why is Learning Harder?Why is Learning Harder?
z In fully observed iid settings, the log likelihood decomposes y g g p

into a sum of local terms.
),|(log)|(log)|,(log);( xzc zxpzpzxpD θθθθ +==l

z With latent variables, all the parameters become coupled 
together via marginalization
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Gradient Learning for mixture 
modelsmodels
z We can learn mixture densities using gradient descent on the g g

log likelihood. The gradients are quite interesting:
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z In other words, the gradient is the responsibility weighted sum 
f
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of the individual log likelihood gradients.
z Can pass this to a conjugate gradient routine.
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Parameter ConstraintsParameter Constraints
z Often we have constraints on the parameters, e.g. Σkπk = 1, Σ p g k k

being symmetric positive definite (hence Σii > 0).
z We can use constrained optimization, or we can 

reparameterize in terms of unconstrained valuesreparameterize in terms of unconstrained values.
z For normalized weights, use the softmax transform: 

z For covariance matrices use the Cholesky decomposition:z For covariance matrices, use the Cholesky decomposition:

where A is upper diagonal with positive diagonal:

AAT=Σ−1

pp g p g

the parameters γi, λi, ηij ∈ R are unconstrained.
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z Use chain rule to compute .  ,
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The Expectation-Maximization 
(EM) Algorithm(EM) Algorithm
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EM algorithm for GMMEM algorithm for GMM
z E.g., A mixture of K Gaussians: Zg

z Z is a latent class indicator vector

Zn

Xn
N

z X is a conditional Gaussian variable with a class-specific 
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EM algorithm for GMM
z Recall MLE for completely observed data

EM algorithm for GMM

zp y

z Data log-likelihood
zxpzpxzpD ∏∏ )|()|(log)(log);( σµπθl
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z What if we do not know zn?

,
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EM algorithm for GMMEM algorithm for GMM
z Start: 

z "Guess" the centroid µk and coveriance Σk of each of the K clusters 

z Loop
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Comparing to K meansComparing to K-means
z Start: 

z "Guess" the centroid µk and coveriance Σk of each of the K clusters 

z Loop
z For each point n=1 to Nz For each point n=1 to N,

compute its cluster label:
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Notes on EM AlgorithmNotes on EM Algorithm
z EM is an optimization strategy for objective functions that can p gy j

be interpreted as likelihoods in the presence of missing data.
z It is much simpler than gradient methods:

z No need to choose step sizez No need to choose step size.
z Enforces constraints automatically.
z Calls inference and fully observed learning as subroutines.

EM i It ti l ith ith t li k d tz EM is an Iterative algorithm with two linked steps:
z E-step: fill-in hidden values using inference, p(z|x, θt).
z M-step: update parameters t+1 using standard MLE/MAP method applied to 

completed datacompleted data

z We will prove that this procedure monotonically improves (or 
leaves it unchanged). Thus it always converges to a local 

ti f th lik lih doptimum of the likelihood.
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IdentifiabilityIdentifiability
z A mixture model induces a multi-modal likelihood.
z Hence gradient ascent can only find a local maximum.
z Mixture models are unidentifiable, since we can always switch 

th hidd l b l ith t ff ti th lik lih dthe hidden labels without affecting the likelihood.
z Hence we should be careful in trying to interpret the 

“meaning” of latent variables.g
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How is EM derived?How is EM derived?
z A mixture of K Gaussians: Z

z Z is a latent class indicator vector

X is a conditional Gaussian variable with a class specific mean/covariance
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How is EM derived?How is EM derived?
z The complete log likelihood: Zp g Zn
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E step
z We maximize           iteratively using the following               )(θcl

E-step

Zy g g
iterative procedure:

)(c Zn
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─ Expectation step: computing the expected value of the 
sufficient statistics of the hidden variables (i.e., z) given 
current est. of the parameters (i.e., π and µ). p ( µ)
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M step
z We maximize           iteratively using the following               )(θcl

M-step

Zy g g
iterative procudure:

─ Maximization step: compute the parameters under               
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z This is isomorphic to MLE except that the variables that are hidden are 
replaced by their expectations (in general they will by replaced by their 
corresponding "sufficient statistics") 
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Compare: K meansCompare: K-means
z The EM algorithm for mixtures of Gaussians is like a "soft g

version" of the K-means algorithm.
z In the K-means “E-step” we do hard assignment:

1

z In the K-means “M-step” we update the means as the 
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Theory underlying EMTheory underlying EM
z What are we doing?g

z Recall that according to MLE, we intend to learn the model 
t th t ld h i i th lik lih d f thparameter that would have maximize the likelihood of the 

data. 

z But we do not observe z, so computing 
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z What shall we do?
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Complete & Incomplete Log 
LikelihoodsLikelihoods
z Complete log likelihoodp g

Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

)|(log);(
def

θθ zxpzx =l
z Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 

observed models).
z Recalled that in this case the objective for e g MLE decomposes into a sum of

)|,(log),;( θθ zxpzxc =l

z Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.

z But given that Z is not observed, lc() is a random quantity, cannot be 
maximized directly.

z Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

z This objective won't decouple 
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Expected Complete Log 
LikelihoodLikelihood
z For any distribution q(z), define expected complete log likelihood:
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y q( ) p p g

z A deterministic function of θ
z Linear in lc() --- inherit its factorizabiility 
z Does maximizing this surrogate yield a maximizer of the likelihood?

z Jensen’s inequality
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Lower Bounds and Free EnergyLower Bounds and Free Energy
z For fixed data x, define a functional called the free energy:gy

);(
)|(
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z The EM algorithm is coordinate-ascent on F :
z E-step:

M step:
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E-step: maximization of expected 
l w r t qlc w.r.t. q
z Claim: 

)|()( ttt xzpqFq θθ+1

z This is the posterior distribution over the latent variables given the data and the 
parameters. Often we need this at test time anyway (e.g. to perform 
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p y y ( g p
classification).

z Proof (easy): this setting attains the bound l(θ;x)≥F(q,θ )
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z Can also show this result using variational calculus or the fact 
that ( )),|(||KL),();( θθθ xzpqqFx =−l
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E-step ≡ plug in posterior 
expectation of latent variablesexpectation of latent variables
z Without loss of generality: assume that p(x,z|θ) is a g y p( | )

generalized exponential family distribution:
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M-step: maximization of expected 
l w r t θlc w.r.t. θ
z Note that the free energy breaks into two terms:gy
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z The first term is the expected complete log likelihood (energy) and the second 
term, which does not depend on θ, is the entropy.

z Thus, in the M-step, maximizing with respect to θ for fixed q
we only need to consider the first term:we only need to consider the first term:

z Under optimal qt+1  this is equivalent to solving a standard MLE of fully observed

∑== +
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z Under optimal q , this is equivalent to solving a standard MLE of fully observed 
model p(x,z|θ), with the sufficient statistics involving z replaced by their 
expectations w.r.t. p(z|x,θ).
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Summary: EM AlgorithmSummary: EM Algorithm
z A way of maximizing likelihood function for latent variable y g

models. Finds MLE of parameters when the original (hard) 
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current g
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

Alt t b t filli i th l t t i bl i th b tz Alternate between filling in the latent variables using the best 
guess (posterior) and updating the parameters based on this 
guess:

tt 1
z E-step: 
z M-step: 

I th M t ti i l b d th lik lih d I

),(maxarg t
q

t qFq θ=+1

),(maxarg ttt qF θθ
θ

11 ++ =

z In the M-step we optimize a lower bound on the likelihood. In 
the E-step we close the gap, making bound=likelihood.
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EM VariantsEM Variants
z Sparse EM:p

Do not re-compute exactly the posterior probability on each 
data point under all models, because it is almost zero. Instead 
keep an “active list” which you update every once in a whilekeep an active list  which you update every once in a while.

z Generalized (Incomplete) EM: ( p )
It might be hard to find the ML parameters in the M-step, even 
given the completed data. We can still make progress by 
doing an M step that improves the likelihood a bit (e gdoing an M-step that improves the likelihood a bit (e.g. 
gradient step). Recall the IRLS step in the mixture of experts 
model.
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A Report Card for EMA Report Card for EM
z Some good things about EM:g g

z no learning rate (step-size) parameter
z automatically enforces parameter constraints
z very fast for low dimensions
z each iteration guaranteed to improve likelihood

Some bad things about EM:z Some bad things about EM:
z can get stuck in local minima
z can be slower than conjugate gradient (especially near convergence)

i i i f tz requires expensive inference step
z is a maximum likelihood/MAP method
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From static to dynamic mixture 
modelsmodels

Dynamic mixtureDynamic mixtureStatic mixtureStatic mixture

Y2 Y3Y1 YT... Y1

A AA AX2 X3X1 XT... AX1
N
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Hidden Markov ModelsHidden Markov Models

Y YY YThe underlying source:

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... The sequence:

The underlying source:
genomic entities, 
dice,

2 31 TThe sequence:
CGH signal, 
sequence of rolls, 

Markov property:
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This problem in IMPORTANT!!! -
☺☺

An experience in a casinoAn experience in a casino

Game:
1 You bet $11. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair 

die, maybe with loaded die), y )
4. Highest number wins $2

Question: 

1245526462146146136136661664661636
616366163616515615115146123562344

Which die is being used in each play?
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A more serious question …
//

z Naturally, data  points arrive one at a timey p
z Does the ordering index carry (additional) clustering information besides the data 

value itself ?

z Example: 
Chromosomes of tumor cell:

C b tCopy number measurements 
(known as CGH)
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Array CGH (comparative genomic 
hybridization)hybridization)

z The basic assumption of a 
CGH experiment is that the 
ratio of the binding of test and 
control DNA is proportional to 
th ti f th bthe ratio of the copy numbers 
of sequences in the two 
samples.

z But various kinds of noises 
make the true observations 
less easy to interpret … 
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DNA Copy number aberration 
types in breast cancer

60-70 fold amplification of  CMYC region

types in breast cancer

Copy number profile for chromosome
1 from 600 MPE cell line

Copy number profile for chromosome
8 from COLO320 cell line

Copy number profile for chromosome 8
in MDA-MB-231 cell line

deletion
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Suppose you were told about the 
following story before heading to Vegasfollowing story before heading to Vegas…

The Dishonest Casino !!!The Dishonest Casino !!!

A casino has two dice:
z Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
L d d diz Loaded die
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forthCasino player switches back-&-forth 
between fair and loaded die once 
every 20 turns

39© Eric Xing @ CMU, 2006-2012



Puzzles Regarding the Dishonest 
CasinoCasino 

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
z How likely is this sequence, given our model of how the casino 

works?
z This is the EVALUATION problem

z What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?p
z This is the DECODING question

z How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded and back?does the casino player change from fair to loaded, and back?
z This is the LEARNING question
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Definition (of HMM)Definition (of HMM)
z Observation spaceObservation space

{ }Alphabetic set:
Euclidean space:

z Index set of hidden statesIndex set of hidden states
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z Transition probabilitiesTransition probabilities between any two statesbetween any two states
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Three Main Questions on HMMsThree Main Questions on HMMs
1.1. EvaluationEvaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x | M)
ALGO. ForwardForward

2.2. DecodingDecoding
GIVEN an HMM M, and a sequence x ,
FIND the sequence of states that maximizes e g P(y | x M)FIND the sequence y of states that maximizes, e.g., P(y | x , M),    

or the most probable subsequence of states
ALGO. ViterbiViterbi, Forward, Forward--backward backward 

33 LearningLearning3.3. LearningLearning
GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,
FIND parameters θ = (π a η ) that maximize P(x | θ)FIND parameters θ = (πi, aij, ηik) that maximize P(x | θ)
ALGO. BaumBaum--Welch (EM)Welch (EM)
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Learning HMM: two scenariosLearning HMM: two scenarios
z Supervised learning: estimation when the “right answer” is g g

known
z Examples: 

GIVEN: a genomic region x = x1…x1,000,000 where we have good, ,
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, 
as he changes dice and produces 10,000 rolls

z Unsupervised learning: estimation when the “right answer” is 
unknown
z Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

z QUESTION: Update the parameters θ of the model to maximize 
P(x|θ) --- Maximal likelihood (ML) estimation 
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Supervised ML estimation ctdSupervised ML estimation, ctd.
z Intuition:

z When we know the underlying states, the best estimate of θ is the 
average frequency of transitions & emissions that occur in the training 
data

z Drawback:
z Given little data, there may be overfitting:

z P(x|θ) is maximized, but θ is unreasonable( | )
0 probabilities – VERY BAD

z Example:
Gi 10 i ll bz Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

z Then: aFF = 1; aFL = 0z Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 
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PseudocountsPseudocounts
z Solution for small training sets:g

z Add pseudocounts
Aij = # times state transition i→j occurs in y + Rij
Bik = # times state i in y emits k in x + SikBik y k Sik

z Rij, Sij are pseudocounts representing our prior belief
z Total pseudocounts: Ri = ΣjRij , Si = ΣkSik , 

z --- "strength" of prior belief, 
z --- total number of imaginary instances in the prior

z Larger total pseudocounts ⇒ strong prior beliefz Larger total pseudocounts ⇒ strong prior belief

z Small total pseudocounts: just to avoid 0 probabilities ---Small total pseudocounts: just to avoid 0 probabilities 
smoothing
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Unsupervised ML estimationUnsupervised ML estimation
z Given x = x1…xN for which the true state path y = y1…yN is 

unknown,

z EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ:
1. Estimate Aij , Bik in the training data1. Estimate Aij , Bik in the training data 

z How?                             , , 
z Update θ according to Aij , Bik
z Now a "supervised learning" problem
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2. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration
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The Baum Welch algorithmThe Baum Welch algorithm
z The complete log likelihoodp g

z The expected complete log likelihood
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The Baum-Welch algorithm --
commentscomments

Time Complexity:

# iterations × O(K2N)

z Guaranteed to increase the log likelihood of the modelz Guaranteed to increase the log likelihood of the model

z Not guaranteed to find globally best parameters

C t l l ti d di i iti l ditiz Converges to local optimum, depending on initial conditions

z Too many parameters / too large model: Overt-fitting
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