Machine Learning

10-701/15-781, Fall 2012
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¢ Reading: Chap. 9, 13, C.B book
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Clustering and partially
observable probabilistic models
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Unobserved Variables .

e A variable can be unobserved (latent) because:

e itis animaginary quantity meant to provide some simplified and abstractive view
of the data generation process

e.g., speech recognition models, mixture models ...

e itis a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete latent variables can be used to partition/cluster data
into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models

e A density model p(x) may be multi-modal.

e \We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).

e Each mode may correspond to a different sub-population
(e.g., male and female).
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Gaussian Mixture Models (GMMSs)

e Consider a mixture of K Gaussian components:

p(xn‘ﬂ’z) = Zk TN 24,2y )
A\

mixture proportion mixture component

X

e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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GGM derivations ot

e Consider a mixture of K Gaussian components:
e Zis a latent class indicator vector:

p(z,)=multi(z, :7) =] 1(z, )"
k

e JXis a conditional Gaussian variable with a class-specific mean/covariance

p(Xn |znk = ]"lulz) - exp{_%(xn _/’lk)rz;l(xn _:uk)}

(272')”1/2‘2/(‘1/2

e The likelihood of a sample:
mixture component
mixture proportion

2=y p(z¥=1z)p(x,|z"=1,47%) T
= ZZH Hk ((”k)z"kN(Xn :ﬂk’zk)z"k ): Zk”kN(XJ HirZy)

p(X,
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Learning mixture models
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Why Is Learning Harder? o

e In fully observed iid settings, the log likelihood decomposes
into a sum of local terms.

¢.(0;D) =log p(x,z|0) =log p(z|6,) +log p(x|z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4(0;D)=log> p(x,z|0)=log > p(z]6,)p(x|z,6,)
Z Z Z Z

X X X
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Gradient Learning for mixture T
models oo

e \We can learn mixture densities using gradient descent on the
log likelihood. The gradients are quite interesting:

¢(6) =log p(x|6) =log > 7, p,(X6,)
k
o¢ 1 apk(x‘ek)
00 p(x|9)zk:”" 00

3 olog p, (x|6,)
kp(xle)Pk(‘k) 20

p.(X6,) dlog p, (X|6,) A
_Z " p(x|6) 00, _Z’qkae

e |n other words, the gradient is the responsibility weighted sum
of the individual log likelihood gradients.

e (Can pass this to a conjugate gradient routine.
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Parameter Constraints o2

e Often we have constraints on the parameters, e.g. X7, =1, 2
being symmetric positive definite (hence X ;> 0).

e \We can use constrained optimization, or we can
reparameterize in terms of unconstrained values.

e For normalized weights, use the softmax transform:

e For covariance matrices, use the Cholesky decomposition:
>1T=ATA
where A is upper diagonal with positive diagonal:
A;=exp(4)>0 A, =n; (j>7) A;=0(j</)
the parameters y, 1, 77, € R are unconstrained.

e Use chain rule to compute ol of

o' oA’
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The Expectation-Maximization
(EM) Algorithm
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EM algorithm for GMM .o

e E.g., A mixture of K Gaussians:

e Zis a latent class indicator vector

p(z,) =multi(z, : 7) = [ [(z, )"

e X s a conditional Gaussian variable with a class-specific
mean/covariance

expt-3 (%, - ) ZH (%, - 4}

X |z2X=1, 1) =
p( n| n H ) (Zﬂ)m/Z‘Zk‘llz
e The likelihood of a sample:

P(x|,2) =, p(z" =1 7)p(x,| 2" =1, 11, %)

- Zzn Hk ((ﬂ-k )Zrl§ N(Xn :/uk’zk)Zrli ): Zk ﬂ-kN(X’l ’uk’zk)
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EM algorithm for GMM

e Recall MLE for completely observed data

e Data log-likelihood

o

£(0;D) = log HD(Z Xy) = |09H p(z, | 7)p(X, | 2,, 1, 0)
= Zlog H;zk + Zlog HN(X 4, o)
= Zszlogﬂk ZZzn Lo (X, -1 )2 +C

e MLE T e =argmax_ £(0; D),
/&k,MLE =argmax , £(6;D) = /&k,MLE =

2 78X,
2z
G e =argmax_ £(6; D) !
e What if we do not know z,,? z. — p(zf =1|x, u®, =)
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EM algorithm for GMM .o

o Start:
e "Guess" the centroid g, and coveriance 2, of each of the K clusters
e Loop
.t e L=1 . L=4
et () =% ﬁ ‘ @
oot et o O % ‘%
- ':‘ '.. 2 .i 2
(a) (c) (d) (e)
L=86 @ L=8 .(-3 L=10 % L=12 @
FO S &
[ * N & *

(f) (9) (h) (1)
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Comparing to K-means 4+

e Start:

e "Guess" the centroid g, and coveriance 2, of each of the K clusters

e Loop
e Foreach point n=1 to N,

compute its cluster label:
(t)y _ (O\T y-1(t) (t)
Z,” =arg “'EX(Xn — ) I (X — )

e For each cluster k=1:K

('[+1) Zn 5(Zr(]t) ! k)Xn

(t+1)
H 5% K) M=
n n .’
i‘; » #‘: = i‘.g a2 ‘t"‘,;:v. ¢‘;: » i‘.%;,
. :.:q -t * :':;...': + % ‘l;;.,'t (3 5 f:’l".;q:% L] ‘:;:3 - . :." ...t *
+ M . 5 + M + N LI + M
(a) (b) (c) (d) (e] (f)
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Notes on EM Algorithm -

e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.

e |t is much simpler than gradient methods:

e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.

e EM is an lterative algorithm with two linked steps:

e E-step: fill-in hidden values using inference, p(zx, &).

e M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data

e \We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

© Eric Xing @ CMU, 2006-2012
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ldentifiability

e A mixture model induces a multi-modal likelihood.

e Hence gradient ascent can only find a local maximum.

e Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the
“meaning” of latent variables.

likelihood

/

parameter space
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How I1s EM derived?

e A mixture of K Gaussians:
e Zis a latent class indicator vector

p(z,)=multi(z, :7) = I 1(z, "
k

e JXis a conditional Gaussian variable with a class-specific mean/covariance

1 .
p(Xn |z/7k :1,/1,2) = (27[)”’/2‘2/{‘1/2 exp{-%(xn -luk)rzkl(xn -/uk)}

e The likelihood of a sample:
p(x,[,2) =, Pz, =1|7)p(x,| 2, =1 1, %)
= Zzn Hk ((”k )Zﬁ N (X, :ﬂkizk)zﬁ ): Zk T N | 4,2y )

e The “complete” likelihood

k _

(%, 28 =11, %) = p(z," =1| 7)) p(x,| 2, =1, 14, Z) = 7 N (%, 11, Z)
p(X,, 2, Z) = [ [[m N (x| 11, Z)]"
k

But this is itself a random variable! Not good as objective function
© Eric Xing @ CMU, 2006-2012
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How I1s EM derived?
S ——

e The complete log likelihood:

£(0;D) = log Hp(zn Xy) = |09H p(z, | 7)p(X, | Z,, 1, 0)
= Zlog H;zk + Zlog HN(x 4, o)
= Zszlogﬁk ZZZ Lo (X, -1 )2 +C

n k -

Lot

e The expected complete log likelihood

(4.0;x,2))= 2log p(z, | 7)), ..+ 2109 p(x, |2, 1. %))

p(z|x)

= 2 2(z5)log 7, —% 2 Z<Z,,k>((X,, — 1) 2 (X, — ) +10g[E, |+ C)
n k n k
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3
E-step .
e We maximize</c (9)> iteratively using the following
iterative procedure:
N

— Expectation step: computing the expected value of the
sufficient statistics of the hidden variables (i.e., 2) given
current est. of the parameters (i.e., zand n).

ON(x, | 40 2)

k(1) _ (f) s (F)y _
Tﬂ < > () p(Z 1|qu ’2 )_ Zﬂ,(f)N(XnJﬂ/f)’sz))

Here we are essentially doing inference

© Eric Xing @ CMU, 2006-2012
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M-step 4

e We maximize</c (9)> iteratively using the following
iterative procudure:

— Maximization step: compute the parameters under

N
current results of the expected value of the hidden variables
7, =argmax(/(0)), = -2(/.(0))=0,Vk, st 2z, =1
k
2z, e p
:>7Z-k: n< >q()N:ZHnX/:< k>N
) >k
L, =arg max</ (0)>, = ™ ZW Fact :
non 6Iog‘Af1‘ e
2 Z_k(f)(X —,u(”l))(X _/u(m))r AT
x +1 4 “n n k n k
S, =argmax(/(0)), = £y = S 50 ax(;:x:“r

This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their
corresponding "sufficient statistics")
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Compare: K-means .
e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.
e Inthe K-means “E-step” we do hard assignment:
Z/Ef) =arg m/?'X(Xn _Iu/((f))TZ;l(f) (Xn _:u/((f))
e |n the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are 0 or 1:
D S 5z, k)x,
" Zn 5(2/7(f) ! k)
. :_;: PO ._-_;:.t . ,: :-;;:,t . ;_;:1‘: . ;?‘t .o } PO
(a) (b) (c) (d) () (f)
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Theory underlying EM -

e \What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4,(0;D)=log > p(x,z|0)=log > p(z]6,)p(x|z,6,)

is difficult!

e \What shall we do?
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Complete & Incomplete Log i
Likelihoods oo

e Complete log likelihood
Let X' denote the observable variable(s), and Z denote the latent variable(s).

If Zcould be observed, then of

£.(6;x,z)=log p(x,z|0)
e Usually, optimizing £() given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, () is a random quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:

.(6;x)=log p(x|0)=log> p(x,z|06)

e This objective won't decouple
© Eric Xing @ CMU, 2006-2012 24



Expected Complete Log i
Likelihood oo

e For any distribution ¢(z), define expected complete log likelihood:
def

(£(0:x,2)), =3 9(z|x,0)log p(x,2|0)
A deterministic function gf %
Linear in £() --- inherit its factorizabiility

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality

£(0;x)=log p(x|0)
=|ngp(X,Z|9) /

p(x,20) /
=
WL

px,z|0)
g(z|x)
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Lower Bounds and Free Energy

e For fixed data x, define a functional called the free energy:

“ p(x,z|0)
F(q,é’)—gq(ZIX)log JZ]x

<{(0;x)

e The EM algorithm is coordinate-ascent on F:
e E-step: qr+1 = arg max F(q,gf)
4

e M-step: ot

=argmax £ (g, 6"

PN
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E-step: maximization of expected | sse:
Lw.rt. g 3

o Claim: g =argmax F(g,0") = p(z| x,6")
g

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).

e Proof (easy): this setting attains the bound 4,x)>F¢,0)
p(x,z|6")

p(z‘x,&t)

= p(z[x,6") log p(x| ")

=log p(x]8') =£(6"; x)
e Can also show this result using variational calculus or the fact
that ¢(6,x)-F(g.0)=KL(gll p(z| x,6))

F(p(zx,60'),0') =" p(zx,6")log
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E-step = plug In posterior
expectation of latent variables 4+

o Without loss of generality: assume that p(x, 2 6) is a
generalized exponential family distribution:

p(x, z|0) = %h(x z) exp{z 0.f(x, z)}

e Special cases: if p(X]2) are GLIMs, then f(x,z2)=n (2)&(x)

e The expected complete log likelihood under g = p(z| x,6")
IS

(4(6"%.2)) .. =D q(z|x,6")log p(x,2|6") - A®)

_ Ze;<;§(x, z)>q ()

p~GLIM

P AUICHINRRACOERC)
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M-step: maximization of expected | ss2:

L w.rt. @ os

e Note that the free energy breaks into two terms:
px,z|0)

g(z|x)
= 9(z|x)log p(x,z|6)-) ¢(z| x)logg(z| x)

F(g.0)=> g(z|x)log

= <lc(9;x,z)>q +H,

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 4, is the entropy.

e Thus, in the M-step, maximizing with respect to dfor fixed ¢
we only need to consider the first term:

r+1 . _
0" =arg mgxx(/c(e, X, z)>qm = arg mgx;q(z | x)log p(x, 2| 6)

e Under optimal ¢, this is equivalent to solving a standard MLE of fully observed
model p(x,z| 6), with the sufficient statistics involving zreplaced by their
expectations w.r.t. p(z] x,6).
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Summary: EM Algorithm o°

e A way of maximizing likelihood function for latent variable
models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
e E-step: q’” =argmax £ (g, 6")
4
o M-step: 6" =argmax F (g™, 6")

e |[n the M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.
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EM Variants ot

e Sparse EM:

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM.:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.
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A Report Card for EM

e Some good things about EM:

no learning rate (step-size) parameter
automatically enforces parameter constraints
very fast for low dimensions

each iteration guaranteed to improve likelihood

e Some bad things about EM:

can get stuck in local minima

can be slower than conjugate gradient (especially near convergence)
requires expensive inference step

is a maximum likelihood/MAP method

© Eric Xing @ CMU, 2006-2012
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From static to dynamic mixture T
models ot
Static mixture Dynamic mixture
A
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Hidden Markov Models ot

The underlying source:
genomic entities,

dice,

QO
The sequence: @

CGH signal,
sequence of rolls,

Markov property:
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This problem in IMPORTANT!!! - cecs
© o5

An experience in a casino

Game:

1.You bet $1
2.You roll (always with a fair die)

3. Casino player rolls (maybe with fair
die, maybe with loaded die)

4.Highest number wins $2
Question:

6462146146136136661664661636
6163661636165156 6 6

Which die is being used in each play?
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®

A more serious question ... T

Naturally, data points arrive one at a time

Does the ordering index carry (additional) clustering information besides the data

value itself ?

Example:
Chromosomes of tumor cell:

Copy number measurements
(known as CGH)

I'ﬁ

‘ﬁ .-lﬁa @
"s "

Ol X uuH

SAMILL

T T T T T
8] S00 1000 1500 2000
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. . 000
Array CGH (comparative genomic | ssee
hybridization) :
s = e The basic assumption of a
(o8 %% CGH experiment is that the
. e — f? ratio of the binding of test and
J_?_;? 4’_?_;9 control DNA is proportional to
N e / the ratio of the copy numbers
ARES 000/ of sequences in the two
;‘{I{'-yg_‘ £o000000, samples.
AR e But various kinds of noises
b make the true observations
- — !11 I less easy to interpret ...
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DNA Copy number aberration
types in breast cancer -

60-70 fold amplification of CMYC region

()

Pl S o LR O e

Y000

Iug‘-rn::c

[ -

s L

,
!

Chramaians 1 gedilon (i) CRpassaana & posilion (kb

Copy number profile for chtromosome  Copy number profile for chromosome

1 from 600 MPE cell line 8 from COLO320 cell line
(c)
2 Copy number profile for chromosome 8
| in MDA-MB-231 cell line
_f‘“-'g I L deletion
iy = — <

Chremaesama 8 pasilion (kb)
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Suppose you were told about the -

following story before heading to Vegas... | ¢

The Dishonest Casino !!!

A casino has two dice:
e Fair die
P(1)=P2)=P@)=P(5)=P(6) =1/6
e Loaded die
P(1) = P(2) =P(3) = P(5) = 1/10
P(6) = 1/2
Casino player switches back-&-forth

between fair and loaded die once
every 20 turns

© Eric Xing @ CMU, 2006-2012
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Puzzles Regarding the Dishonest | 3822
Casino -

GIVEN: A sequence of rolls by the casino player

64621461461361266616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
works?

e Thisis the EVALUATION problem

e \What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
e Thisis the DECODING question

e How “loaded” is the loaded die? How “fair” is the fair die”? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question
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Definition (of HMM) -

e Observation space

Alphabetic set: C = C.Coye,C
Euclidean space: Rd { be K} @ @‘@v G
e Index set of hidden states : @ @ @

1={,2,--- .M}
e Transition probabilities between any two states ~ Grarhical model
piyi =1yl =1) =4
or  ply,lyii=1~ Multinomial(a,’l,a,,2 ..... a,,M),V/' el 'o
e Start probabilities
p(y,) ~ Multinomial(z,, 7,,..., 7, ).
e Emission probabilities associated with each state
p(x, |y; =1) ~ Multinomial(.,,6.,..... 5., ) Vi el.
or in general:

plx Ly, =) ~f(16)Viel

State automata
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Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y| x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence X,
FIND parameters 6 = (7, a;, 1) that maximize P(x| 0)
ALGO. Baum-Welch (EM)

© Eric Xing @ CMU, 2006-2012
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Learning HMM: two scenarios

e Supervised learning: estimation when the “right answer” is
known
e Examples:

GIVEN:  agenomic region x = X4...X4 00,000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize
A X 0) --- Maximal likelihood (ML) estimation
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Supervised ML estimation, ctd. .

e Intuition:

e \When we know the underlying states, the best estimate of dis the
average frequency of transitions & emissions that occur in the training
data

e Drawback:

e Given little data, there may be overfitting:
P(x|0) is maximized, but 0 is unreasonable
0 probabilities — VERY BAD

e Example:

e Given 10 casino rolls, we observe
x=2,1, 5, 6, 1, 2, 3, 6, 2, 3
F, F, F, F, F

o Then aFF =

© Eric Xing @ CMU, 2006-2012 44



Pseudocounts

e Solution for small training sets:
e Add pseudocounts

A,J- = # times state transition /—» occurs iny + ,Q,-J-
B, = # times state /iny emits Ainx+ S,

° R,-J-, S,J-are pseudocounts representing our prior belief
e Total pseudocounts: R,=% R, 5;= %S,

--- "strength" of prior belief,

--- total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief

e Small total pseudocounts: just to avoid O probabilities ---
smoothing

© Eric Xing @ CMU, 2006-2012

45



Unsupervised ML estimation -

o Given x= x,...x,for which the true state path y= y,...yy/is
unknown,

e EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters 6.

1. Estimate A4;, 8, in the training data
How? A/J' = Z,,,f <y/;',r—1)/n{ﬁ> B, = Zn,f <yf;.,r>Xn/ff,
Update ¢ according to A4;, B,
Now a "supervised learning" problem

2. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set @ each iteration
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The Baum Welch algorithm o°

e The complete log likelihood

T T
¢.(0;x,y) =log p(x,y) = IOQHEP(yn,l)H PV, |)/n,f—1)H p(X,; |Xn,r)j
n t=2 =1
e The expected complete log likelihood
<4 (6;x, Y)> = ZH:(<y';"1>P(yn,1lxn) log 7[/) + Zn:g(<y;.f—1yl{7‘>

o EM
e TheE step

7//77‘ <ym‘> p(y/;f :1|X/1)
é:n:f = <yn,7‘—1yf;j,.7‘> = p(y/;‘,f—l = 1' y/;/f = 1 | Xn)
e The M step ("symbolically" identical to MLE)

ML_Z,/;J Z Zfrzl . b;(m_z Z, 17_7/;77‘. ﬂf
N J Z Zf 17//I7f Z Zf 17/,/7f
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The Baum-Welch algorithm -- i
comments oo

Time Complexity:
# iterations x O(K2N)

e Guaranteed to increase the log likelihood of the model

e Not guaranteed to find globally best parameters

e Converges to local optimum, depending on initial conditions

e Too many parameters / too large model: Overt-fitting
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